APPLICATION
The 4X/7-350235JB, equipped with a double-pole switch, is designed for use as an adjustable control thermostat for freeze protection and temperature maintenance applications requiring pipewall or tankwall sensing. The design of the thermostat permits its use as a junction box for connecting the heating cable to power by using the optional mounting kit (TM4X for ordinary locations or TM7 for Division 2 hazardous locations). The thermostat features an epoxy-coated cast aluminum NEMA 4X/NEMA 7 enclosure to provide watertight, dust-tight, corrosion-resistant and explosion proof protection to the thermostat switch.

The 4X/7-350235JB thermostat is approved for use in both ordinary (nonclassified) and hazardous (classified) locations.

RATINGS
Voltage rating...125/240/277 Vac
Switch rating ..25 amps
Switch type ...DPST
Electrical connection 1 screw terminals on switch
Adjustable control range.... 35°F to 235°F (2°C to 113°C)
Maximum control differential9°F (5°C)
Maximum bulb exposure temperature......300°F (149°C)
Bulb dimensions1/4" x 6-3/8" (6.4 x 162 mm)
Bulb material..............................nickel-plated copper
Capillary length...6' (1.8 m)
Capillary material..............................nickel-plated copper
Capillary armorflexible stainless steel

Notes
1. The 4X/7-350235JB utilizes two 1" NPT conduit hub openings for the mounting expediter and incoming power. The thermostat includes an internal grounding terminal.

CERTIFICATIONS / APPROVALS

FM Approvals
Ordinary Locations
Hazardous (Classified) Locations
Class I, Divisions 1 and 2, Groups B, C and D
Class II, Divisions 1 and 2, Groups F and G
Class III, Divisions 1 and 2

TM4X optional mounting kit (purchased separately) components include:
- Pipe-mounted expediter
- 2 stainless steel pipe attachment bands.
- Heater cable grommet
- 2 power connection boots
- RTV adhesive
- Wire fasteners and grounding lug

TM7 optional mounting kit (purchased separately) components include:
- Pipe-mounted expediter
- Cable seal assembly
- 2 stainless steel pipe attachment bands
- Heater cable grommet
- 2 power connection boots
- RTV adhesive
- Wire fasteners and grounding lug

THERMON The Heat Tracing Specialists®
Corporate Headquarters: 100 Thermon Dr • PO Box 609 San Marcos, TX 78667-0609 • Phone: 512-396-5801 • 1-800-820-4328
For the Thermon office nearest you visit us at . . . www.thermon.com

Form TEP0037-0714 • © Thermon Manufacturing Co. • Printed in U.S.A. • Information subject to change.
The following installation procedures are suggested guidelines for the installation of a Thermon mechanical thermostat. They are not intended to preclude the use of other methods utilizing accepted engineering or field construction practices.

UPON RECEIVING, THERMOSTAT
1. Upon receiving thermostat, check to make sure the proper type has been received.
2. Store in a dry place.

APPLICATIONS
1. Mechanical thermostats are used for freeze protection or temperature maintenance of piping, tanks and instrumentation.
2. Thermostat may be installed in ordinary (nonclassified) and hazardous (classified) locations depending on the specific approvals. Ensure that thermostat/junction box combination is suitable for the area classification. If installed in classified (hazardous) locations, approved explosion-proof seal fittings shall be installed on all electrical wire entries.
3. Check the line voltage and the heater circuit current to be sure that the ratings of the thermostat are not exceeded.
4. Mount the thermostat/junction box vertically upright and in a position that will prevent condensation from draining into the enclosure from the connected conduit.

THERMOSTAT CONNECTIONS
- When a line sensing controller is specified, the sensor should be placed at least 90° around the circumference from the heating cable, or at least 2” (5 cm) from the cable. Mount the bulb in a location that is representative of the overall system temperature away from valves, pipe supports, nozzles, or other heat sinks. Fasten the bulb, capillary and flexible armor (where provided) securely to the pipe/vessel with fiber or metallic tape, being sure that the entire length of the bulb is in intimate contact with the pipe surface. The bulb may be covered with a parallel pass of metallic tape to enhance heat transfer. The thermostat may require more than one support point. Prevent kinking of the capillary.
- For line sensing control, a leg of the heating circuit is to be connected in series with the control contacts as shown in the illustration below. Seal all thermal insulation penetrations after installation to prevent moisture intrusion.
- For ambient sensing control, both legs of the heating circuit should be connected in series with the control contacts as shown in the illustration below. When using an ambient sensing temperature controller, the mounting location should be representative of the coldest region, and the sensing element should not be exposed to direct sunlight or any additional heat source.

5. All electric power supply circuits should be disconnected and locked out prior to beginning wiring of the thermostat/junction box.
6. Set the thermostat dial to the control set point, and complete the electrical wiring. The heating system should not be energized prior to the circuit being properly tested.
7. Once the piping or vessel is insulated and in service, the temperature of the process fluid may be measured and compared with the control set point. Adjust the set point where necessary.
8. Power should always be disconnected and a lockout/tagout procedure performed prior to opening the thermostat/junction box enclosure for maintenance.
9. Any modification to the enclosure or deviation from these procedures may affect unit’s rating or approvals. Contact factory if modifications are necessary.
10. If recalibration becomes necessary, contact factory for procedures/assistance.

TYPICAL WIRING DIAGRAM

Heating Cable vs. Sensor Location (Line Sensing Control)